
Object Oriented Programming

Nearly all of the programs and techniques you have used until now fall under the procedural
style of programming. Admittedly, you have made use of some build-in objects, but when
referring to them, it’s just mentioned the absolute minimum.

The procedural style of programming was the dominant approach to software developments
for decades of IT, and it is still in use today. Moreover, it isn’t going to disappear in the
future, as it works very well for specific types of projects (generally, not very complex ones
and not large ones, but there are lots of exceptions to that rule).

The object approach is quite young (much younger than the procedural approach) and is
particularly useful when applied to big and complex projects carried out by large teams
consisting of many developers.

This kind of understanding of a project’s structure makes many important tasks easier, for
example, dividing the project into small, independent parts, and independent development
of different project elements.

Python is a universal tool for both object and procedural programming, meaning that it
may be successfully utilized in both spheres.

Furthermore, you can create lots of useful applications, even if you know nothing about
classes and objects, but you have to keep in mind that some of the problems (for example
graphical user interface handling) may require a strict object approach.

Fortunately, object programming is relatively simple.

Procedural vs Object-oriented Approach
In the procedural approach, it’s possible to distinguish two different and completely
separate worlds: the world of data and the world of code.

The world of data is populated with variables of different kinds, while the world of code is
inhabited by code grouped into modules and functions.

Functions are able to use (and abuse as well) data, but not vice versa. (For example, when a
sine function gets a bank account balance as a parameter).

Data cannot use functions, but they can use methods, functions which are invoked from
within the data, not beside them.

The object approach suggests a completely different way of thinking. The data and the code
are enclosed together in the same world, divided into classes.

Every class is like a recipe which can be used when you want to create a useful object (this is
where the name of approach comes from). You may produce as many objects as you need to
solve your problem.

Every object has a set of traits (properties or attributes) and is able to perform a set of
activities (methods).

The recipes may be modified if they are inadequate for specific purposes and, in effect, new
classes may be created. These new classes inherit properties and methods from the
originals, and usually add some new ones, creating new, more specific tools.

Objects are incarnations of ideas expressed in classes, like a cheesecake on your plate is an
incarnation of the idea expressed in a recipe printed in a cookbook.

The objects interact with each other, exchanging data or activating their methods. A
properly constructed class (and thus, its objects) are able to protect the sensible data and
hide if from unauthorized modifications.

There is no clear border between data and code, they live as one in objects.

All these concepts are not as abstract as you may first suspect. On the contrary, they all are
taken from real-life experiences, and therefore are extremely useful in computer
programing. They don’t create artificial life, they reflect real facts, relationships and
circumstances.

Class hierarchies
Class here that we are concerned with is like a category, as a result of precisely defined
similarities.

Image source:
cisco/Python institute

Let’s define “vehicles”,
object that moves?
Well, dogs move too,
so we need a better
definition.

“Vehicles are artificially
created entities used
for transportation,
moved by forces of
nature, and directed (driven) by humans.” Based on this definition, dogs aren’t vehicles.

The vehicles class is very broad, so we have to define some more specialized classes
(subclasses). The vehicles class will be a superclass for them all.

Note that the hierarchy grows from top to bottom. The most general, and the widest class is
always at the top (the superclass, vehicles in this case) while its descendants are located
below (the subclasses).

In the example above. The superclass 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 has four subclasses:

• Land vehicles

• Water vehicles

• Air vehicles

• Space vehicles

In this example, we’ll discuss the 𝑙𝑎𝑛𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 subclass only. If you wish, you can continue
with the remaining classes.

As you can see, 𝑙𝑎𝑛𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 are further divided into 𝑤ℎ𝑒𝑒𝑙𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠,
𝑡𝑟𝑎𝑐𝑘𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 and ℎ𝑜𝑣𝑒𝑟𝑐𝑟𝑎𝑓𝑡𝑠. The hierarchy we’ve created is illustrated by the
figure.

Note the direction of the arrows, they always point to the superclass. The top-level class is
an exception, it doesn’t have its own superclass.

Another example will be animals, we say that all 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 (our top-level class) can be divided
into 5 subclasses:

• Mammals

• Reptiles

• Birds

• Fish

• Amphibians

Let’s dig deeper into 𝑀𝑎𝑚𝑚𝑎𝑙𝑠. We have identified the following subclasses, 𝑤𝑖𝑙𝑑 𝑎𝑛𝑖𝑚𝑎𝑙𝑠
and 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐𝑎𝑡𝑒𝑑 𝑚𝑎𝑚𝑚𝑎𝑙𝑠.

Try to extend the hierarchy anyway you want, and find the right place for humans.

What is an object?
A class (among other definitions) is a set of objects. An object is a being belonging to a class.

An object is an incarnation of the requirements, traits, and qualities assigned to a specific
class. This may sound simple, but note the following important circumstances. Classes form
a hierarchy.

This may mean that an object belonging to a specific class belongs to all the superclasses at
the same time. It may also mean that any object belonging to a superclass may not belong to
any of its subclasses.

For example: any personal car is an object belonging to the wheeled vehicles class. It also
means that the same car belongs to all superclasses of its home class, therefore it is a
member of the vehicles class too. Your dog (or your cat) is an object included in the
domesticated 𝑚𝑎𝑚𝑚𝑎𝑙 class, which means that it is included in the 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 class as well.

Each subclass is more specialized (or more specific) than its superclass. Conversely, each
superclass is more general (more abstract) than any of its subclasses.

Note that we’ve presumed that a class may only have one superclass, which is not always
true, but we’ll discuss this issue more a bit later.

Inheritance
One of the fundamental concepts of object programming is inheritance. Any object bound
to a specific level of a class hierarchy inherits ALL the traits (as well as requirements and
qualities) defined inside any of the superclasses. This means that traits in a superclass is a
subset of those in a subclass.

Image source:
cisco/Python Institute

What does an object have?
The object programming convention assumes that every existing object may be equipped
with three groups of attributes.

• An object has a name that uniquely identifies it within its home namespace
(although there may be some anonymous objects too)

• An object has a set of individual properties which makes it original unique or
outstanding (although it’s possible that some objects may have no properties at all)

• An object has a set of abilities to perform specific activities, able to change the
object itself, or some of the other objects.

There is a hint (although this doesn’t always work) which can help you identify any of the
three spheres above. Whenever you describe an object and you use:

• A noun, you probably define the object’s name

• An adjective, you probably define the object’s property

• A verb, you probably define the object’s activity.

Two example phrases should serve as a good example:

• A red Ferrari went quickly
Object name: Ferrari
Home Class: Wheeled vehicles
Property: color (red)
Activity: go (quickly)

• Rudolph is a small kitten who sleeps all day (no coloring because I’m lazy)
Object name: Rudolph
Home class: kitten
Property: size (small)
Activity: sleep (all day)

Writing your own class
Object programming is the art of defining and expanding classes. A class is a model of a very
specific part of reality, reflecting properties and activities found in the real world.

The classes defined at the beginning are too general and imprecise to cover the largest
possible number of real cases.

There’s no obstacle to defining new, more precise subclasses. They will inherit everything
from their superclass, so the work that went into its creation isn’t wasted.

The new class may add new properties and new activities, and therefore may be more useful
in specific applications. Obviously, it may be used as a superclass for any number of newly
created subclasses.

The process doesn’t need to have an end. You can create as many classes as you need.

The class you define has nothing to do with the object: the existence of a class does not
mean that any of the compatible objects will automatically be created. The class itself isn’t
able to create an object, you have you create it yourself, and Python allows you to do this.

class sample:

 pass

Here is the simplest class, but its rather poor, it has neither properties nor activities. It’s
empty.

The definition begins with the keyword 𝑐𝑙𝑎𝑠𝑠. The keyword is followed by an identifier
which will name the class (don’t confuse it with the object’s name, these are two different
things).

Next, you add a colon, as classes, like functions, form their own nested block. The content
inside the block defines all the class's properties and activities.

The 𝑝𝑎𝑠𝑠 keyword fills the class with nothing. It doesn't contain any methods or properties.

The newly defined class becomes a tool that is able to create new objects. The tool has to be
used explicitly, on demand.

Imagine that you want to create one (exactly one) object of the 𝑠𝑎𝑚𝑝𝑙𝑒 class.

To do this, you need to assign a variable to store the newly created object of that class, and
create an object at the same time.

some_object = sample()

Note these:

• the class name tries to pretend that it's a function, we'll discuss it soon.

• the newly created object is equipped with everything the class brings; as this class is
completely empty, the object is empty, too.

The act of creating an object of the selected class is also called an instantiation (as the
object becomes an instance of the class).

Stack Stack (abstract data type) - Wikipedia

A stack is a data structure developed to store data in a very specific way.

Imagine a stack of coins. You aren't able to put a coin anywhere else but on the top of the
stack. Similarly, you can't get a coin off the stack from any place other than the top of the
stack. If you want to get the coin that lies on the bottom, you have to remove all the coins
from the higher levels.

A stack’s behavior is described as Last In First Out (LIFO) or First In Last Out (FILO).

A stack is an object
with two elementary
operations,
conventionally named
push (put new
element on the top)
and pop (take an
element away from
the top).

This data structure is
used very often in
many classical
algorithms, for
example DFS (Depth
First Search). It can
also be used to solve
many problems too,
like the Josephus
problem.

Illustration of a stack (image source: Wikipedia Stack (abstract data type) - Wikipedia)

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

stack = []

def push (val):

 stack.append(val)

def pop ():

 del stack[-1]

def last ():

 return stack[-1]

The code right here simulates a stack.

Stack-the PROCEDURAL approach vs the OBJECT-ORIENTED
approach
The procedural stack is ready. Of course, there are some weaknesses.

1. The essential variable (the 𝑠𝑡𝑎𝑐𝑘 list) is highly vulnerable. Anyone can modify it in
an uncontrollable way. It may happen as a result of carelessness.

2. It may also happen that one day you may need more than one stack. You'll have to
create another list for the stack's storage, and probably other 𝑝𝑢𝑠ℎ and 𝑝𝑜𝑝
functions too.

The objective approach delivers solutions for each of the problems above.

1. It has the ability to hide (protect) selected values against unauthorized access. It’s
called encapsulation (Encapsulation (computer programming) - Wikipedia). The
encapsulated values can be neither accessed nor modified if you want to use them
exclusively.

2. When you have a class implementing all the needed stack behaviours, you can
produce as many stacks as you want, you needn't copy or replicate any part of the
code.

It also has the ability to enrich the stack with new functions comes from inheritance, you can
create a new class (a subclass) which inherits all the existing traits from the superclass, and
adds some new ones.

Stack-OOP
First of all, before writing a 𝑐𝑙𝑎𝑠𝑠 ourself, you have to know about a function called
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟. Its name must always be __𝑖𝑛𝑖𝑡__, it has to have at least one parameter. The
obligatory parameter is usually named 𝑠𝑒𝑙𝑓, it's only a convention, but you should follow it -
it simplifies the process of reading and understanding your code.

This code here creates an empty list named 𝑠𝑡𝑎𝑐𝑘_𝑙𝑖𝑠𝑡 under each class 𝑆𝑡𝑎𝑐𝑘.

class Stack:

 def __init__ (self):

 self.stack_list = []

stack = Stack()

print(len(stack.stack_list)) # 0

The dotted notation is used here, just like when invoking methods. This is the general
convention for accessing an object's properties, you need to name the object, put a dot (.)
after it, and specify the desired property's name. Note that you shouldn’t put any paratheses
there, it’s a property after all, not a method.

https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

Adding two underscores before the property makes it become private.

class Stack:

 def __init__ (self):

 self.__stack_list = []

stack = Stack()

print(len(stack.__stack_list)) # AttributeError

You can’t see it from the outside world. This is how Python implements the encapsulation
concept.

Public components cannot start with two (or more) underscores. There is one more
requirement, the name must not have no more than one trailing underscore.

Here is a sample of 𝑠𝑡𝑎𝑐𝑘, in object-oriented programming.

class Stack:

 def __init__ (self):

 self.__stack_list = []

 def push (self, val):

 self.__stack_list.append(val)

 def pop (self):

 del self.__stack_list[-1]

 def top (self):

 return self.__stack_list[-1]

stack = Stack()

All methods have to have the 𝑠𝑒𝑙𝑓 parameter. It allows the method to access entities
(properties and activities/methods) carried out by the actual object. You cannot omit it.
Every time Python invokes a method, it implicitly sends the current object as the first
argument.

The way that methods are invoked is illustrated below:

The first stage delivers the object as a whole (𝑠𝑒𝑙𝑓), next you get to the 𝑠𝑒𝑙𝑓. __𝑠𝑡𝑎𝑐𝑘_𝑙𝑖𝑠𝑡
list, then you perform the third and last step 𝑠𝑒𝑙𝑓. __𝑠𝑡𝑎𝑐𝑘_𝑙𝑖𝑠𝑡. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑣𝑎𝑙).

class Stack:

 ……

s1 = Stack()

s2 = Stack()

Here two stacks are created, note that they work independently.

Here you can see a new class 𝐴𝑑𝑑𝑖𝑛𝑔𝑆𝑡𝑎𝑐𝑘, the third line in it (𝑆𝑡𝑎𝑐𝑘. __𝑖𝑛𝑖𝑡__(𝑠𝑒𝑙𝑓))
creates a Stack and uses it.

class Stack:

 def __init__ (self):

 self.__stack_list = []

 def push (self, val):

 self.__stack_list.append(val)

 def pop (self):

 del self.__stack_list[-1]

 def top (self):

 return self.__stack_list[-1]

class AddingStack (Stack):

 def __init__(self):

 Stack.__init__(self)

 self.__sum = 0

 def push (self, val):

 self.__sum += val

 Stack.push(self, val)

 def pop (self):

 self.__sum -= Stack.top(self)

 Stack.pop()

 def get_sum (self):

 return self.__sum

s1 = Stack()

s2 = Stack()

Queue Queue (abstract data type) - Wikipedia
Queue is a FIFO data structure, read the Wikipedia page for further understanding, the code
is left as an exercise.

__dict__
This method can let you have a peer at the class.

Instance variables

In general, a class can be equipped with two different kinds of data to form a class's
properties.

One kind of class property exists when and only when it is explicitly created and added to an
object. As you already know, this can be done during the object's initialization, performed by
the constructor.

Some important consequences of the above approach:

• Different objects of the same class may possess different sets of properties.

• There must be a way to safely check if a specific object owns the property you want

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

to utilize (unless you want to provoke an exception)

• Each object carries its own set of properties - they don't interfere with one another
in any way.

Such variables (properties) are called instance variables.

The word instance suggests that they are closely connect to the objects (which are class
instances), not to the class themselves.

There is one conclusion that should be stated here: modifying an instance variable of any
object has no impact on all the remaining objects. Instance variables are perfectly isolated
from each other.

Class variables
A class variable is a property which exists in just one copy and is stored outside any object.

Note: no instance variable exists if there is no object in the class; a class variable exists in
one copy even if there are no objects in the class.

class Example:

 counter = 0

 def __init__ (self):

 Example.counter += 1

a = Example()

b = Example()

print(a.counter) # 2

Class variables aren’t shown in an object’s __𝑑𝑖𝑐𝑡__, but you can always try to look into the
variable of the same name, but at the class level.

A class variable always presents the same value in all class instances (objects).

Check if a certain attribute exists in a class
Python provides a function which is able to safely check if any object/class contains a
specified property. The function is named ℎ𝑎𝑠𝑎𝑡𝑡𝑟, and expects two arguments to be passed
to it:

1. The class/object being checked
2. The name of the property whose existence has to be reported (string)

class Example:

 def __init__ (self, val):

 if val % 2 == 0:

 self.lol = 1;

 else:

 self.bruh = 1;

a = Example(1)

if hasattr (a, "bruh"):

 print("bruh exists") # bruh exists

if hasattr (a, "lol"):

 print("lol exists")

The ℎ𝑎𝑠𝑎𝑡𝑡𝑟 can also check for class variables.

Methods in class
A method is a function embedded inside a class.

There is one fundamental requirement, a method is obliged to have at least one parameter
(and again, it’s the parameter 𝑠𝑒𝑙𝑓).

The 𝑠𝑒𝑙𝑓 parameter is used to obtain access to the object’s instance and class variables. It is
also used to invoke other object/class methods from inside the class.

class Example:

 def dunno (self):

 print("hihi")

 def method (self):

 print("Method")

 self.dunno()

a = Example()

a.method()

Method

hihi

As mentioned beforehand, the __𝑖𝑛𝑖𝑡__ method isn’t just a regular method, it will be a
constructor.

The following code demonstrates hidden methods and how to activate them:

class Example:

 def visible(self):

 print("visible")

 def __hidden(self):

 print("hidden")

obj = Example()

obj.visible()

try:

 obj.__hidden()

except:

 print("failed") # failed

obj._Example__hidden() # hidden

__name__

Another built-in property besides __𝑑𝑖𝑐𝑡__ is __𝑛𝑎𝑚𝑒__, which is a string.

The property contains the name of the class.

class Example:

 pass

print(Example.__name__) # Example

obj = Example()

print(type(obj).__name__) # Example

print(obj.__name__) # AttributeError

__module__
It returns the name of the module which contains the definition of the class.

class Classy:

 pass

print(Classy.__module__) # __main__

obj = Classy()

print(obj.__module__) # __main__

__base__
Returns a tuple, contains classes (not class names) which are direct superclasses for the
class. The order is the same as that used inside the class definition.

I’ll show you only a very basic example, as I want to highlight how inheritance works.

Note that only classes have this attribute, objects don’t.

class SuperOne:

 pass

class SuperTwo:

 pass

class Sub(SuperOne, SuperTwo):

 pass

def printBases(cls):

 print('(', end='')

 for x in cls.__bases__:

 print(x.__name__, end=' ')

 print(')')

printBases(SuperOne) # (object)

printBases(SuperTwo) # (object)

printBases(Sub) # (SuperOne SuperTwo)

Reflection and introspection
All these means allow the Python programmer to perform two important activities specific
to many objective languages.

• Introspection, which is the ability of a program to examine the type or properties of
an object at runtime.

• Reflection, which goes a step further, and is the ability of a program to manipulate
the values, properties and/or functions of an object at runtime.

In other words, you don't have to know a complete class/object definition to manipulate the
object, as the object and/or its class contain the metadata allowing you to recognize its
features during program execution.

Some attributes worth mentioning/restating
__𝑑𝑖𝑐𝑡__, __𝑛𝑎𝑚𝑒__, __𝑚𝑜𝑑𝑢𝑙𝑒__, __𝑏𝑎𝑠𝑒𝑠__, 𝑔𝑒𝑡𝑎𝑡𝑡𝑟(), 𝑖𝑠𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(), 𝑠𝑒𝑡𝑎𝑡𝑡𝑟().

They are pretty straightforward so I’m not going to dig deep into them here.

Another method for a class to introduce itself is like this.

class Example:

 pass

a = Example()

print(a) # <__main__.Example object at 0x7fdf8a4f1ef0>

If you run the code on your computer, you’ll see something very similar, although the
hexadecimal number will be different, as it’s just an internal object identifier used by
Python.

When Python needs any class/object to be presented as a string (putting an object as an
argument in the 𝑝𝑟𝑖𝑛𝑡() function invocation fits this condition) it tries to invoke a method
named __𝑠𝑡𝑟__() from the object and to use the string it returns.

The default __𝑠𝑡𝑟__() returns the previous string, not so good right? You can change it just by
defining your own method of the name.

class Example:

 def __init__ (self):

 self.first_name = "Potter"

 self.last_name = "Harry"

 def __str__ (self):

 return self.last_name + ' ' + self.first_name

a = Example()

print(a) # Harry Potter

Inheritance
Inheritance is a common practice (in object programming) of passing attributes and
methods from the superclass (defined and existing) to a newly created class, called the
subclass.

In other words, inheritance is a way of building a new class, not from scratch, but by using
an already defined repertoire of traits. The new class inherits (and this is the key) all the
already existing equipment, but is able to add some new ones if needed.

Thanks to that, it is possible to build more specialized (and more concrete) classes using
some sets of predefined general rules and behavious.

class Vehicle:

 pass

class LandVehicle(Vehicle):

 pass

class TrackedVehicle(LandVehicle):

 pass

The above code is a very simple example of two-level inheritance.

The 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 class is the superclass for both the 𝐿𝑎𝑛𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒 and 𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒 classes.

The 𝐿𝑎𝑛𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒 class is a superclass for 𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒.

The 𝐿𝑎𝑛𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒 class and 𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒 class are subclasses of 𝑉𝑒ℎ𝑖𝑐𝑙𝑒.

The 𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒 class is a subclass of 𝐿𝑎𝑛𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒.

Python offers a function which is able to identify a relationship between two classes, and
although its diagnosis isn't complex, it can check if a particular class is a subclass of any other
class. This is how it looks:

𝑖𝑠𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠(𝐶𝑙𝑎𝑠𝑠𝑂𝑛𝑒, 𝐶𝑙𝑎𝑠𝑠𝑇𝑤𝑜)

It returns a Boolean value.

import yaml

class Vehicle:

 pass

class LandVehicle(Vehicle):

 pass

class TrackedVehicle(LandVehicle):

 pass

for x in [Vehicle, LandVehicle, TrackedVehicle]:

 for y in [Vehicle, LandVehicle, TrackedVehicle]:

 print(issubclass(x, y), end="\t")

 print()

True False False

True True False

True True True

And I believe you can understand the code here.

There is one important observation to make: each class is considered to be a subclass of
itself.

The function 𝑖𝑠𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒() detects whether the object is an instance of the class, and
returns a Boolean answer.

The 𝒊𝒔 operator
It refers directly to objects, it is used as below:

object_one is obejct_two

The 𝑖𝑠 operator checks whether two variables (𝑜𝑏𝑗𝑒𝑐𝑡_𝑜𝑛𝑒 and 𝑜𝑏𝑗𝑒𝑐𝑡_𝑡𝑤𝑜 here) refer to
the same object.

Don't forget that variables don't store the objects themselves, but only the handles
pointing to the internal Python memory.

Assigning a value of an object variable to another variable doesn't copy the object, but only
its handle. This is why an operator like 𝑖𝑠 may be very useful in particular circumstances.

class SampleClass:

 def __init__(self, val):

 self.val = val

one = SampleClass(0)

two = SampleClass(2)

three = one

three.val += 1

print(one is two) # False

print(two is three) # False

print(three is one) # True

print(one.val, two.val, three.val) # 1 2 1

𝑡ℎ𝑟𝑒𝑒 𝑖𝑠 𝑜𝑛𝑒 is true as in line 7 (𝑡ℎ𝑟𝑒𝑒 = 𝑜𝑛𝑒) we assigned three as one.

from re import A

a = "Mary had a little "

b = "Mary had a little lamb"

a += "lamb"

print(a == b, a is b) # True False

This shows that even if the objects have same content, they are still different objects.

How Python finds properties and methods
Consider the code here:

class Super:

 def __init__ (self, name):

 self.name = name

 def __str__ (self):

 return "My name is " + self.name + "."

class Sub (Super):

 def __init__ (self, name):

 Super.__init__(self, name)

obj = Sub("ML7")

print(obj) # My name is ML7.

The 𝑆𝑢𝑏 class defines its own constructor, which invokes the one from the superclass. How
it’s done is 𝑆𝑢𝑝𝑒𝑟. __𝑖𝑛𝑖𝑡__(𝑠𝑒𝑙𝑓, 𝑛𝑎𝑚𝑒). We have then instantiated one object of class 𝑆𝑢𝑏
and printed it.

Note: As there is no __𝑠𝑡𝑟__() method within the 𝑆𝑢𝑏 class, the printed string is to be
produced within the 𝑆𝑢𝑝𝑒𝑟 class. This means that the __𝑠𝑡𝑟__() method has been inherited
by the 𝑆𝑢𝑏 class.

Here is another way to do the same thing

class Super:

 def __init__ (self, name):

 self.name = name

 def __str__ (self):

 return "My name is " + self.name + "."

class Sub (Super):

 def __init__ (self, name):

 super.__init__(self, name)

obj = Sub("ML7")

print(obj) # My name is ML7.

In this example, we make use of the 𝑠𝑢𝑝𝑒𝑟() function, which accesses the superclass
without needing to know its name.

Note: You can use this mechanism not only to invoke the superclass constructor, but also to
get access to any of the resources available inside the superclass.

class Super:

 supVar = 1

class Sub(Super):

 subVar = 2

obj = Sub()

print(obj.subVar) # 2

print(obj.supVar) # 1

As you can see, the 𝑆𝑢𝑝𝑒𝑟 class defines one class variable named 𝑠𝑢𝑝𝑉𝑎𝑟, and the 𝑆𝑢𝑏 class
defines a variable named 𝑠𝑢𝑏𝑉𝑎𝑟. Both these variables are visible inside the 𝑆𝑢𝑏 class.

The same effect can be observed with instance variables.

class Super:

 def __init__ (self):

 self.supVar = 11

class Sub(Super):

 def __init__ (self):

 super().__init__()

 self.subVar = 12

obj = Sub()

print(obj.subVar) # 12

print(obj.supVar) # 11

The 𝑆𝑢𝑏 class constructor creates an instance variable named 𝑠𝑢𝑏𝑉𝑎𝑟, while the 𝑆𝑢𝑝𝑒𝑟
constructor does the same with a variable named 𝑠𝑢𝑝𝑉𝑎𝑟. As previously, both variables are
accessible from within the object of class 𝑆𝑢𝑏.

Note: The existence of the 𝑠𝑢𝑝𝑉𝑎𝑟 variable is obviously conditioned by the 𝑆𝑢𝑝𝑒𝑟 class
constructor invocation. Omitting it would result in the absence of the variable in the created
object.

It's now possible to formulate a general statement describing Python's behaviour.

When you try to access any object's entity, Python will try to (in this order):

1. Find it inside the object itself.
2. Find in in all classes involved in the object’s inheritance line from bottom to top.

If both of the above fails, an exception (𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟) is raised.

The first condition may need some additional attention. As you know, all objects deriving
from a particular class may have different sets of attributes, and some of the attributes may
be added to the object a long time after the object's creation.

Multiple inheritance
Multiple inheritance occurs when a class has more than one superclass. Here is an example:

class SuperA:

 var_a = 10

 def fun_a(self):

 return 11

class SuperB:

 var_b = 20

 def fun_b(self):

 return 21

class Sub (SuperA, SuperB):

 pass

obj = Sub()

print(obj.var_a, obj.fun_a()) # 10 11

print(obj.var_b, obj.fun_b()) # 20 21

The 𝑆𝑢𝑏 class has two superclasses: 𝑆𝑢𝑝𝑒𝑟𝐴 and 𝑆𝑢𝑝𝑒𝑟𝐵. This means that the 𝑆𝑢𝑏 class
inherits all the attributes offered by both 𝑆𝑢𝑝𝑒𝑟𝐴 and 𝑆𝑢𝑝𝑒𝑟𝐵.

Let’s analyse this example here

class Level1:

 var = 100

 def fun(self):

 return 101

class Level2 (Level1):

 var = 200

 def fun(self):

 return 201

class Level3 (Level2):

 pass

obj = Level3()

print(obj.var, obj.fun()) # 200 201

Both 𝐿𝑒𝑣𝑒𝑙1 and 𝐿𝑒𝑣𝑒𝑙2 classes define a method named 𝑓𝑢𝑛() and a property named 𝑣𝑎𝑟.
Does this mean that the 𝐿𝑒𝑣𝑒𝑙3 class object will be able to access two copies of each entity?
Not at all.

The entity defined later (in the inheritance sense) overrides the same entity defined
earlier. That’s why the output is 200 201.

This feature can be intentionally used to modify default (or previously defined) class
behaviours when any of its classes needs to act in a different way to its ancestor.

We can also say that Python looks for an entity from bottom to top.

But what if two classes are at the same level?

class Left:

 var = "L"

 var_left = "LL"

 def fun (self):

 return "Left"

class Right:

 var = "R"

 var_right = "RR"

 def fun (self):

 return "Right"

class Sub (Left, Right):

 pass

obj = Sub()

print(obj.var, obj.var_left, obj.var_right, obj.fun()) # L LL RR Left

The 𝑆𝑢𝑏 class inherits goods from two superclasses, 𝐿𝑒𝑓𝑡 and 𝑅𝑖𝑔ℎ𝑡.

There is no doubt that the class variable 𝑣𝑎𝑟_𝑟𝑖𝑔ℎ𝑡 comes from the 𝑅𝑖𝑔ℎ𝑡 class, and
𝑣𝑎𝑟_𝑙𝑒𝑓𝑡 comes from 𝐿𝑒𝑓𝑡 respectively.

As we can see from the output, we can conclude that Python looks for object components
in the following order:

1. Inside the object itself.
2. In its superclasses, from bottom to top.

3. If there is more than one class on a particular inheritance path, Python scans them
from left to right.

Now we swap 𝐿𝑒𝑓𝑡 and 𝑅𝑖𝑔ℎ𝑡.

...

class Sub (Right, Left):

 pass

...

The output is now:

R LL RR Right

More examples

class One:

 def do_it(self):

 print("do_it from One")

 def doanything(self):

 self.do_it()

class Two(One):

 def do_it(self):

 print("do_it from Two")

one = One()

two = Two()

one.doanything() # do_it from One

two.doanything() # do_it from Two

I believe that 𝑜𝑛𝑒. 𝑑𝑜𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔() is straightforward for you.

Our attention is on the second one, the second invocation will launch 𝑑𝑜_𝑖𝑡() in the form
existing inside the 𝑇𝑤𝑜 class, regardless of the fact that the invocation takes place within the
𝑂𝑛𝑒 class.

The situation in which the subclass is able to modify its superclass behaviour is called
polymorphism. The word comes from Greek (𝑝𝑜𝑙𝑦𝑠: "many, much" and 𝑚𝑜𝑟𝑝ℎ𝑒, "form,
shape"), which means that one and the same class can take various forms depending on the
redefinitions done by any of its subclasses.

The method, redefined in any of the superclasses, thus changing the behaviour of the
superclasses, is called virtual.

In other words, no class is given once and for all. Each class's behaviour may be modified at
any time by any of its subclasses.

Single inheritance vs multiple inheritance

• A single inheritance class is always simpler, safer, and easier to understand and
maintain.

• Multiple inheritance is always risky, as you have many more opportunities to make a
mistake in identifying these parts of the superclasses which will effectively influence
the new class.

• Multiple inheritance may make overriding extremely tricky. Moreover, using the
𝑠𝑢𝑝𝑒𝑟() function becomes ambiguous;

• Multiple inheritance violates the single responsibility principle (Single-responsibility
principle - Wikipedia) as it makes a new class of two (or more) classes that know
nothing about each other.

• You are strongly suggested multiple inheritance as the last of all possible solutions.
Composition may be a better alternative.

Composition
Inheritance is not the only way of constructing adaptable classes. You can achieve the same
goals (not always, but very often) by using a technique named composition.

Composition is the process of composing an object using other different objects.

It can be said that:

• Inheritance extends a class’s capabilities by adding new components and modifying
existing ones. In other words, the complete recipe is contained inside the class itself
and all its ancestors, the object takes all the class's belongings and makes use of
them.

• Composition projects a class as a container, able to store and use other objects
(derived from other classes) where each of the objects implements a part of a
desired class's behaviour.

Confused? Let’s simplify this a bit.

Inheritance is an IS-A relationship.

Composition is an HAS-A relationship.

Here is a detailed explanation I found on YouTube (OOP Principles: Composition vs
Inheritance)

Below is a sample code for composition.

class robot ():

 def move (self):

 print("moveeeee!")

 def meow (self):

 print("meowwwww!")

class play_ball_game ():

 def chase_the_ball (self):

 print("playing ball games!")

class dog_robot ():

 def __init__ (self):

 self.o1 = robot()

 self.o2 = play_ball_game()

 def bark (self):

 print("woof!")

 def move (self):

 return self.o1.move()

https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://youtu.be/RiRrcCUyn4M
https://youtu.be/RiRrcCUyn4M

 def chase_the_ball (self):

 return self.o2.chase_the_ball()

a = dog_robot()

a.move() # moveeeee!

a.bark() # woof!

a.chase_the_ball() # playing ball games!

Note that we didn't "import" the meow function from class robot

Method Resolution Order (MRO)
MRO, in general, is a way (you can call it a strategy) in which a particular programming
language scans through the upper part of a class’s hierarchy in order to find the method it
currently needs.

It's worth emphasizing that different languages use slightly (or even completely) different
MROs. Python is a unique creature in this respect, however, and its customs are a bit
specific.

Here is an example code,

class Top:

 def m_top(self):

 print("top")

class Middle(Top):

 def m_middle(self):

 print("middle")

class Bottom(Middle):

 def m_bottom(self):

 print("bottom")

object = Bottom()

object.m_bottom() # bottom

object.m_middle() # middle

object.m_top() # top

And here is another example code

class Top:

 def m_top(self):

 print("top")

class Middle(Top):

 def m_middle(self):

 print("middle")

class Bottom(Middle, Top):

 def m_bottom(self):

 print("bottom")

object = Bottom()

object.m_bottom() # bottom

object.m_middle() # middle

object.m_top() # top

Found the difference?

It’s this line 𝑐𝑙𝑎𝑠𝑠 𝐵𝑜𝑡𝑡𝑜𝑚(𝑀𝑖𝑑𝑑𝑙𝑒, 𝑇𝑜𝑝):.

In this exotic way, we've turned a very simple code with a clear single-inheritance path into a
mysterious multiple-inheritance riddle.

“Is it valid?” you may ask. Yes, it is.

“How is that possible?” you should ask now.

As you can see, the order in which the two superclasses have been listed between
parenthesis is compliant with the code's structure: the 𝑀𝑖𝑑𝑑𝑙𝑒 class precedes the 𝑇𝑜𝑝 class,
just like in the real inheritance path.

Despite its oddity, the sample is correct and works as expected, but it has to be stated that
this notation doesn’t bring any new functionality or additional meaning.

Let’s modify the code once again.

class Top:

 def m_top(self):

 print("top")

class Middle(Top):

 def m_middle(self):

 print("middle")

class Bottom(Top, Middle):

 def m_bottom(self):

 print("bottom")

object = Bottom()

object.m_bottom()

object.m_middle()

object.m_top()

I’ve swapped 𝑐𝑙𝑎𝑠𝑠 𝐵𝑜𝑡𝑡𝑜𝑚(𝑀𝑖𝑑𝑑𝑙𝑒, 𝑇𝑜𝑝) to 𝑐𝑙𝑎𝑠𝑠 𝐵𝑜𝑡𝑡𝑜𝑚(𝑇𝑜𝑝, 𝑀𝑖𝑑𝑑𝑙𝑒), try run the
code. Now it shows this:

𝑇𝑦𝑝𝑒𝐸𝑟𝑟𝑜𝑟: 𝐶𝑎𝑛𝑛𝑜𝑡 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 (𝑀𝑅𝑂) 𝑓𝑜𝑟 𝑏𝑎𝑠𝑒𝑠 𝑇𝑜𝑝, 𝑀𝑖𝑑𝑑𝑙𝑒

The order we tried to force (Top, Middle) is incompatible with the inheritance path which is
derived from the code's structure. Python won't like it.

Python's MRO cannot be bent or violated, not just because that's the way Python works, but
also because it’s a rule you have to obey.

The diamond problem

The second example of the spectrum of issues that can possibly arise from multiple
inheritance is illustrated by a
classic problem named the
diamond problem. The name
reflects the shape of the
inheritance diagram, take a look
at the picture:

• There is an upmost
superclass 𝐴.

• There are two subclasses
derived from 𝐴: 𝐵 and 𝐶.

• The bottommost subclass
named 𝐷, derived from 𝐵
and 𝐶 (or 𝐶 and 𝐵, as
these two variants mean
different things in Python)

Image source: cisco/Python Institute

Here is the illustrated code

class A:

 pass

class B(A):

 pass

class C(A):

 pass

class D(B, C):

 pass

obj = D()

To make it more understandable, here is another sample.

class Top:

 def m_top (self):

 print("top")

class Middle_Left (Top):

 def m_middle (self):

 print("middle_left")

class Middle_Right (Top):

 def m_middle (self):

 print("middle_right")

class Bottom (Middle_Left, Middle_Right):

 def m_bottom (self):

 print("bottom")

object = Bottom()

object.m_bottom() # bottom

object.m_middle() # middle_left

object.m_top() # top

Note that both 𝑀𝑖𝑑𝑑𝑙𝑒 classes define a method of the same name, 𝑚_𝑚𝑖𝑑𝑑𝑙𝑒().

It introduces a small uncertainty to our sample, although I’m absolutely sure that you can
answer the following question: which of the two 𝑚_𝑚𝑖𝑑𝑑𝑙𝑒() methods will actually be
invoked when the following line is executed?

Well, as mentioned before, if two classes are at the same inheritance level, Python will
process them from left to right. Therefore 𝑚𝑖𝑑𝑑𝑙𝑒_𝑙𝑒𝑓𝑡 was printed.

As you can see, diamonds may bring some problems into your life – both the real ones and
those offered by Python.

USE COMPOSITION
WHEN YOU CAN,
AND USE
INHERITANCE WHEN
YOU MUST.

More about exceptions
Discussing object programming offers a very good opportunity to return to exceptions. The
objective nature of Python's exceptions makes them a very flexible tool, able to fit to specific
needs, even those you don't yet know about.

Before we dive into the objective face of exceptions, I want to show you some syntactical
and semantic aspects of the way in which Python treats the try-except block, as it offers a
little more than what we have presented so far.

𝒆𝒍𝒔𝒆 block
The first feature we want discuss here is an additional, possible branch that can be placed
inside (or rather, directly behind) the 𝑡𝑟𝑦 − 𝑒𝑥𝑐𝑒𝑝𝑡 block, it's the part of the code starting
with 𝑒𝑙𝑠𝑒.

Here is an example, I think you can understand what 𝑒𝑙𝑠𝑒 block do with it.

def func (n):

 try:

 n = 1 / n

 except ZeroDivisionError:

 print("Division failed")

 return None

 else:

 print("Everything went fine")

 return n

print(func(2))

Everything went fine

0.5

print(func(0))

Division failed

None

A code labelled in this way is executed when (and only when) no exception has been raised
inside the 𝑡𝑟𝑦: part.

Note: the 𝑒𝑙𝑠𝑒: branch has to be located after the last 𝑒𝑥𝑐𝑒𝑝𝑡 branch.

𝒇𝒊𝒏𝒂𝒍𝒍𝒚 block
Another extension to the 𝑡𝑟𝑦 − 𝑒𝑥𝑐𝑒𝑝𝑡 block.

def func (n):

 try:

 n = 1 / n

 except ZeroDivisionError:

 print("Division failed")

 n = None

 else:

 print("Everything went fine")

 finally:

 print("Bye!")

 return n

print(func(2))

Everything went fine

Bye!

0.5

print(func(0))

Division failed

Bye!

None

The 𝑓𝑖𝑛𝑎𝑙𝑙𝑦 block is always executed (it finalizes the 𝑡𝑟𝑦 − 𝑒𝑥𝑐𝑒𝑝𝑡 block execution, hence
its name), no matter what happened earlier, even when raising an exception, no matter
whether this has been handled or not.

Exceptions are classes
All the previous examples were content with detecting a specific kind of exception and
responding to it in an appropriate way. Now we're going to delve deeper, and look inside the
exception itself.

When an exception is raised, an object of the class is instantiated, and goes through all levels
of program execution, looking for the 𝑒𝑥𝑐𝑒𝑝𝑡 branch that is prepared to deal with it.

Such an object carries some useful information which can help you to precisely identify all
aspects of the pending situation. To achieve that goal, Python offers a special variant of the
exception clause.

try:

 x = int("Hello!")

except Exception as e:

 print(e) # invalid literal for int() with base 10: 'Hello!'

 print(e.__str__()) # invalid literal for int() with base 10: 'Hello!'

As you can see, the 𝑒𝑥𝑐𝑒𝑝𝑡 statement is extended, and contains an additional phrase
starting with the 𝑎𝑠 keyword, followed by an identifier. The identifier is designed to catch
the exception object so you can analyse its nature and draw proper conclusions.

Note: the identifier's scope covers its 𝑒𝑥𝑐𝑒𝑝𝑡 branch only, and doesn't go any further.

The example presents a very simple way of utilizing the received object, printing it out. (The
output is produced by the object’s __𝑠𝑡𝑟__(), as you can see.) It contains a brief message
describing the reason.

The same message will be printed if there is no fitting 𝑒𝑥𝑐𝑒𝑝𝑡 block in the code, and Python
is forced to handle it alone.

def print_exception_tree(thisclass, nest = 0):

 if nest > 1:

 print(" |" * (nest - 1), end="")

 if nest > 0:

 print(" +---", end="")

 print(thisclass.__name__)

 for subclass in thisclass.__subclasses__():

 print_exception_tree(subclass, nest + 1)

print_exception_tree(BaseException)

This program dumps all predefined exception classes in the form of a tree-like printout. (Run
it yourself, the output will not be provided due to the fact that it’s too lengthy).

As a tree is a perfect example of a recursive data structure, a recursion seems to be the best
tool to traverse through it. The 𝑝𝑟𝑖𝑛𝑡_𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛_𝑡𝑟𝑒𝑒() function takes two arguments:

1. A point inside the tree from which we start traversing the tree;
2. A nesting level (we'll use it to build a simplified drawing of the tree's branches)

And yes, as you might know, this is an algorithm called Depth First Search (DFS).

Let's start from the tree's root - the root of Python's exception classes is the 𝐵𝑎𝑠𝑒𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛
class (it's a superclass of all other exceptions).

For each of the encountered classes, perform the same set of operations:

1. Print its name, taken from the __𝑛𝑎𝑚𝑒__ property;

2. Iterate through the list of subclasses delivered by the __𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠__() method, and
recursively invoke the 𝑝𝑟𝑖𝑛𝑡_𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛_𝑡𝑟𝑒𝑒() function, incrementing the nesting
level respectively.

Detailed anatomy of exceptions
The 𝐵𝑎𝑠𝑒𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 class introduces a property named 𝑎𝑟𝑔𝑠. It's a tuple designed to
gather all arguments passed to the class constructor. It is empty if the construct has been
invoked without any arguments, or contains just one element when the constructor gets one
argument (we don't count the 𝑠𝑒𝑙𝑓 argument here).

def print_args (args):

 lng = len(args)

 if lng == 0:

 print("")

 elif lng == 1:

 print(args[0])

 else:

 print(str(args))

try:

 raise Exception

except Exception as e:

 print(e, e.__str__(), sep = ' : ' ,end = ' : ') # : :

 print_args(e.args) #

try:

 raise Exception("my exception")

except Exception as e:

 print(e, e.__str__(), sep = ' : ', end = ' : ') # my exception : my

exception :

 print_args(e.args) # my exception

try:

 raise Exception("my", "exception")

except Exception as e:

 print(e, e.__str__(), sep = ' : ', end = ' : ') # ('my', 'exception') :

('my', 'exception') :

 print_args(e.args) # ('my', 'exception')

Here is an illustration on how 𝑎𝑟𝑔𝑠 can be used.

How you create your own exception
The exceptions hierarchy is neither closed nor finished, and you can always extend it if you
want or need to create your own world populated with your own exceptions.

It may be useful when you create a complex module which detects errors and raises
exceptions, and you want the exceptions to be easily distinguishable from any others
brought by Python.

This is done by defining your own, new exceptions as subclasses derived from predefined
ones.

Note: If you want to create an exception which will be utilized as a specialized case of any
built-in exception, derive it from just this one. If you want to build your own hierarchy, and
don't want it to be closely connected to Python's exception tree, derive it from any of the
top exception classes, like 𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛.

Imagine that you've created a brand-new arithmetic, ruled by your own laws and theorems.
It's clear that division has been redefined, too, and has to behave in a different way than
routine dividing. It's also clear that this new division should raise its own exception, different
from the built-in 𝑍𝑒𝑟𝑜𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟, but it's reasonable to assume that in some
circumstances, you (or your arithmetic's user) may want to treat all zero divisions in the
same way.

Here is an example

class MyZeroDivisionError (ZeroDivisionError):

 pass

def do_the_division (mine):

 if mine:

 raise MyZeroDivisionError("some worse news")

 else:

 raise ZeroDivisionError("some bad news")

for mode in [False, True]:

 try:

 do_the_division(mode)

 except ZeroDivisionError:

 print('Division by zero')

for mode in [False, True]:

 try:

 do_the_division(mode)

 except MyZeroDivisionError:

 print('My division by zero')

 except ZeroDivisionError:

 print('Original division by zero')

Division by zero

Division by zero

Original division by zero

Division by zero

• We've defined our own exception, named 𝑀𝑦𝑍𝑒𝑟𝑜𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟, derived from the
built-in 𝑍𝑒𝑟𝑜𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟. As you can see, we've decided not to add any new

components to the class. In effect, an exception of this class can be - depending on
the desired point of view - treated like a plain 𝑍𝑒𝑟𝑜𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟, or considered
separately.

• The 𝑑𝑜_𝑡ℎ𝑒_𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛() function raises either a 𝑀𝑦𝑍𝑒𝑟𝑜𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟 or
𝑍𝑒𝑟𝑜𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟 exception, depending on the argument's value.

The function is invoked four times in total, while the first two invocations are handled using
only one 𝑒𝑥𝑐𝑒𝑝𝑡 branch (the more general one) and the last two ones with two different
branches, able to distinguish the exceptions (don't forget: the order of the branches makes a
fundamental difference!)

class PizzaError(Exception):

 def __init__(self, pizza, message):

 Exception.__init__(self, message)

 self.pizza = pizza

class TooMuchCheeseError(PizzaError):

 def __init__(self, pizza, cheese, message):

 PizzaError._init__(self, pizza, message)

 self.cheese = cheese

Here is an example of an exception structure.

You can start building it by defining a general exception as a new base class for any other
specialized exception. Like 𝑃𝑖𝑧𝑧𝑎𝐸𝑟𝑟𝑜𝑟 in the above example.

A more specific problem (like an excess of cheese) can require a more specific exception. It's
possible to derive the new class from the already defined 𝑃𝑖𝑧𝑧𝑎𝐸𝑟𝑟𝑜𝑟 class,
𝑇𝑜𝑜𝑀𝑢𝑐ℎ𝐶ℎ𝑒𝑒𝑠𝑒𝐸𝑟𝑟𝑜𝑟 here in the example.

The 𝑇𝑜𝑜𝑀𝑢𝑐ℎ𝐶ℎ𝑒𝑒𝑠𝑒𝐸𝑟𝑟𝑜𝑟 exception needs more information than the regular
𝑃𝑖𝑧𝑧𝑎𝐸𝑟𝑟𝑜𝑟 exception, so we add it to the constructor - the name 𝑐ℎ𝑒𝑒𝑠𝑒 is then stored for
further processing.

class PizzaError(Exception):

 def __init__(self, pizza = "unknown", message = ""):

 Exception.__init__(self, message)

 self.pizza = pizza

class TooMuchCheeseError(PizzaError):

 def __init__(self, pizza = "unknown", cheese = ">100", message = ""):

 PizzaError.__init__(self, pizza, message)

 self.cheese = cheese

def make_pizza(pizza, cheese):

 if pizza not in ['margherita', 'capricciosa', 'calzone']:

 raise PizzaError

 if cheese > 100:

 raise TooMuchCheeseError

 print("Pizza ready!")

for (pz, ch) in [('calzone', 0), ('margherita', 110), ('mafia', 20)]:

 try:

 make_pizza(pz, ch)

 except TooMuchCheeseError as tmce:

 print(tmce, ':', tmce.cheese)

 except PizzaError as pe:

 print(pe, ':', pe.pizza)

Pizza ready!

too much cheese : 110

no such pizza on the menu : mafia

no such pizza on the menu : mafia

Here is a “complete” version of the example above.

Note these:

• removing the branch starting with 𝑒𝑥𝑐𝑒𝑝𝑡 𝑇𝑜𝑜𝑀𝑢𝑐ℎ𝐶ℎ𝑒𝑒𝑠𝑒𝐸𝑟𝑟𝑜𝑟 will cause all

appearing exceptions to be classified as 𝑃𝑖𝑧𝑧𝑎𝐸𝑟𝑟𝑜𝑟;

• removing the branch starting with 𝑒𝑥𝑐𝑒𝑝𝑡 𝑃𝑖𝑧𝑧𝑎𝐸𝑟𝑟𝑜𝑟 will cause the

𝑇𝑜𝑜𝑀𝑢𝑐ℎ𝐶ℎ𝑒𝑒𝑠𝑒𝐸𝑟𝑟𝑜𝑟 exceptions to remain unhandled, and will cause the

program to terminate.

